BCn-symmetric polynomials
نویسنده
چکیده
We consider two important families of BCn-symmetric polynomials, namely Okounkov’s interpolation polynomials and Koornwinder’s orthogonal polynomials. We give a family of difference equations satisfied by the former, as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we give new proofs of Macdonald’s conjectures, as well as new identities, including an inverse binomial formula and several branching rule and connection coefficient identities. We also derive families of ordinary symmetric functions that reduce to the interpolation and Koornwinder polynomials upon appropriate specialization. As an application, we consider a number of new integral conjectures associated to classical symmetric spaces.
منابع مشابه
ELLIPTIC INTEGRABLE SYSTEMS q-difference shift for van Diejen’s BCn type Jackson integral arising from ‘elementary’ symmetric polynomials
We study a q-difference equation of a BCn type Jackson integral, which is a multiple q-series generalized from a q-analogue of Selberg’s integral. The equation is characterized by some new symmetric polynomials defined via the symplectic Schur functions. As an application of it, we give another proof of a product formula for the BCn type Jackson integral, which is equivalent to the so-called q-...
متن کاملBCn-symmetric abelian functions
We construct a family of BCn-symmetric biorthogonal abelian functions generalizing Koornwinder’s orthogonal polynomials, and prove a number of their properties, most notably analogues of Macdonald’s conjectures. The construction is based on a direct construction for a special case generalizing Okounkov’s interpolation polynomials. We show that these interpolation functions satisfy a collection ...
متن کاملAskey-wilson Polynomials for Root Systems of Type Bc
This paper introduces a family of Askey-Wilson type orthogonal polynomials in n variables associated with a root system of type BCn. The family depends, apart from q, on 5 parameters. For n = 1 it specializes to the four-parameter family of one-variable Askey-Wilson polynomials. For any n it contains Macdonald’s two three-parameter families of orthogonal polynomials associated with a root syste...
متن کاملHidden Algebras of the (super) Calogero and Sutherland models
We propose to parametrize the configuration space of one-dimensional quantum systems of N identical particles by the elementary symmetric polynomials of bosonic and fermionic coordinates. It is shown that in this parametrization the Hamiltonians of the AN , BCN , BN , CN and DN Calogero and Sutherland models, as well as their supersymmetric generalizations, can be expressed — for arbitrary valu...
متن کاملBuckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کامل